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Abstract

This report documents the techniques used to filter quantities on a stretched grid gen-

eral circulation model. Standard high-latitude filtering techniques (e.g. using an FFT

to decompose and filter unstable harmonics at selected latitudes) applied on a stretched

grid are shown to produce significant distortions of the prognostic state when used

to control instabilities near the pole. A new filtering technique is developed which

accurately accounts for the non-uniform grid by computing the eigenvectors and eigen-

frequencies associated with the stretching. A filter function, constructed to selectively
damp those modes whose associated eigenfrequencies exceed some critical value, is used

to construct a set of grid-spaced weights which are shown to effectively filter without

distortion. Both offline and GCM experiments are shown using the new filtering tech-

nique. Finally, a brief examination is also made on the impact of applying the Shapiro
filter on the stretched grid.
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1 Introduction

Version 2 of the Aries/GEOS dynamical core (Suarez and Takacs,1995) was developed at

the Goddard Space Flight Center for use in data assimilation and climate prediction appli-

cations. In this paper we present a generalization of this dynamical core that allows for a

non-uniform latitude/longitude (AOj, AAi) grid. This capability allows use of the model for

regional data assimilation with the Goddard Earth Observing System (GEOS) Data Assim-

ilation System (DAS) (see Rood, 1996) and for regional prediction studies using the NASA

Seasonal to Interannual Prediction Project's (NSIPP) coupled prediction system. The use

of this dynamical core in conjunction with a non-uniform grid has been demonstrated by

Fox-Rabinovitz et al. (1997) for the geld-Suarez (1994) dynamics benchmark. That work
demonstrated the usefulness of achieving high resolution results over selected regions with

much greater efficiency than employing high-resolution uniformly over the sphere.

The Aries/GEOS dynamical core relies on two filtering strategies to ensure stability and

efficiency. The first, high-latitude filtering, is done to control linear instability due to the

converging meridions near tile pole. This filter selectively damps the tendencies of fastest

modes. Thus, on a uniform grid, the filter acts near the poles on the smallest scales. The

second technique is the application of the Shapiro (1970) filter. This filter is applied globally

to damp small-scale dispersive waves and to prevent computational nonlinear instability

(Phillips, 1959) to occur. This report will examine the properties of these two filtering

techniques on the stretched grid, and develop a stretched grid convolution filter applicable

to controlling linear instability in high latitudes.

2 Stretched Grid GEOS GCM

Following the work of Fox-Rabinovitz et al. (1997), the stretched grid dynamical core

was interfaced with the uniform grid physics package of the GEOS General Circulation

Model (GCM). While the ultimate goal will be to perform the physics on the stretched grid

itself, this more conservative approach was used to avoid unforseen problems within the

parameterizations in regions of high resolution. In practice, a copy of the dynamic state

variables (u, v, O, q, Ps) are transformed (via cubic interpolation) to the uniform grid to force

tile physics packages. The tendencies of the dynamic state variables due to the physics are

then transformed to the dynamics stretched grid to act as external diabatic forcing in the

time integration scheme. As a result, the dynamics state is always updated and preserved

on the stretched grid.

The generation of the stretched grid used for this study employs a cosine mapping function

to smoothly create grid increments which vary with wavenumber 1 in the longitudinal

direction, and increase to a maximum at the farthest pole in the latitudinal direction.

These longitude and latitude grid increments are shown in Fig. 1. For this study, the



uniformgrid resolutionis definedby a 2.5°x2.0° Ion-lat grid (144x91 points). These points

are re-distributed in longitude and latitude so as to produce uniform 1.0°xl.0 ° resolution

over the eastern United States (_ 28N-48N, I00W-70W). Figure 2 shows the resulting 2-

dimensional grid structure over the globe. Note that in the coarsest region (the South-East

quadrant) an effective resolution of .-- 5°x4 ° is used.

Starting from an arbitrary, uniform grid January simulation, initial conditions were trans-

formed and balanced on the stretched grid to begin stretched grid forecasts. The top panel

of Fig. 3 shows the initial zonal mean temperature distribution and the day 5 temperature

change from the intitial condition. During this 5-day forecast, a stratospheric warming

event has taken place (between day 4 and 5) which is associated with strong cross-polar

flow. The bottom panel shows the temperature change and day 5 zonal wind at 0.2 mb

from latitudes 50N to 90N (longitnde 0 at bottom). We see that near the poles in the region

of highest longitudinal resolution, computational small scale features have developed. This

occurs even though the timestep chosen for the integration was adequately reduced to reflect

the increased resolution in the area of interest. It was n0ted in Fox-Rabinovitz et al. (1997)

that, even for the simple-physics Held-Suarez test, excessive polar noise developed when
_ became large (>_ 16). In those cases, ad hoc strengtheningtotal stretching factors (A_m,, J

of the polar filters was required. It is clear from these results that, while the standard polar

filtering technique is effective in preventing linear instability in many cases, it is not robust

enough for use oll the stretched grid for general applications.

3 Uniform Grid High-Latitude Filter

To understand why the standard high-latitude filtering technique is not adequate when using

the stretched grid, we must first review the technique employed on the uniform grid. As

pointed out in Suarez and Takacs (1995), polar Fourier filters in the Aries/GEOS dynamical

core are applied to the tendencies of all prognostic variables. This is done to avoid linear

computational instability due to the convergence of the meridians near the poles. The

filter acts poleward of a critical latitude ¢c (nominally 45°), and its strength is gradually

increased toward the pole by increasing the number of affected zonal wavenumbers and the

amount by which they are damped.

Consider the linearized, one-dimensional shallow water equations with no mean flow given

by:

Ou _ g oh (1)
Ot a cos ¢ 0h '

Oh H Ou
_ (e)

Ot a cos ¢ 0h "



Discretizingin spaceon astaggeredC-grid,wemaywrite

0u_+½ g (hi_- hi)Ot - acos¢ \ A_ ' (3)

Ohi g ( ui+½ - ui-½"_
Ot -- acos¢ k AA ] " (4)

Here, AA = 2_ and IM is the zonal dimension. Assuming wave solutions of the form:

ui+ ½(t) ---- _et(k(i+½ )A)'-_'t) , (5)

hi(t) = ]_e_(kiA_-Èt) , (6)

where i denotes the grid-space location in longitude and t = v/L_, it can be shown that the

frequency associated with each harmonic component k is given by

2v Hu=+ sin(k ). (7)
a cos CA

We see that the frequency increases as a function of wavenumber and as we approach the

pole.

Using the leapfrog time scheme, linear stability requires that

uAt __ 1. (8)

This forces restrictions on the timestep governed by

1 acos CAA 1

at < 2 sin(k )" (9)

To eliminate the requirement that the timestep goes to zero as we approach the pole, a

wavenumber-dependent filter, Fk, is applied to the time tendencies of the prognostic fields

resulting in a modified frequency function given by

2v_H sin (k-_) . (10)u=4-Fk acosCAA

By requiring that the frequency be no larger than UMAX (e.g., the unfiltered value associated

with the shortest wavelength at the critical latitude ¢c), the functional form of Fk may be
obtained:

Fk=min 1,_,cos¢_ sin P'x



Here, n is an arbitrary factor used by Suarez and Takacs (1995) to increase the strength of
the filter. While not needed for these linear studies, it has proven beneficial to use n = 2 for

the non-linear uniform grid GCM. Unless otherwise stated, results shown here were made

using n = 1. It is important to remember that applying the filter in this manner simply
slows down each harmonic component by an amount which produces linear stability. More

precisely, the computational propogation speed of each zonal harmonic is adjusted to keep

its transport to no more than 1 A), per timestep. The filter has no impact on the magnitude

nor energy of the harmonic.

Figures 4 and 5 show the filter function at latitudes 85N and 60N, respectively. For these

results, the zonal dimension was set to IM=144 (corresponding to a 2.5 ° resolution). Near

the pole (85N) the filter strength is quite strong with only wavenumbers 0-5 remaining

untouched, ttowever, away from the pole (60N) the filter is much weaker with only moderate

damping even at the smallest scales. Also shown in Figs. 4 and 5 are the equivalent

grid-space weighting coefficients at various longitudes obtained through convolution of the
spectral filter functions. Since the grid is uniform, the weighting stencil is identical for each

longitude location. For the strong spectral filter function near the pole, the convolution

weights are quite broad in longitude and have a peak amplitude which is relatively small

(0.3). Away from the pole where the filter strength is weak, the convolution weights resemble
that of a Delta function whose amplitude is near 1.0 at the grid-point location and almost

0.0 elsewhere. The breadth of the convolution weights are thus intimately connected to the

physical scale of the waves being filtered.

To illustrate the effect of filtering, a set of initial conditions consisting of the single harmonics

1, 3, 5, and 7 (see Fig. 6) is used. To benchmark this test, the integration is first run

without filters by using a sufficiently small timestep which is linearly stable, Fig. 7. These

single harmonics simply oscillate in time with no translational motion. The test is then

repeated using a timestep comparable to that used for GCM simulations. Without filtering,

instability occurs within a few iterations (not shown). Figure 8 shows the results from the

uniform grid using the standard FFT polar filter described above. The filtering associated
with latitude 85N was used for these runs. With tendency filtering, the solutions look quite

similar to the non-filtered case with no discernable instabilities. Figure 9 compares the

filtered and non-filtered solutions at longitude 0 °, with additional wavenumbers 9 and 12

also shown. As the wavenumber increases, the frequency is increasingly slowed compared

with the non-filtered run. Also, the frequencies for wavenumbers 7, 9, and 12 are identical

for the filtered run since they are forced to be no greater than the maximum allowed value.

However, the magnitude of the oscillation remains untouched, with no distortion of the

wave form.
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Theexperimentis thenrepeatedusingthestretchedgrid. Theuniform2.5° grid isstretched
to 1° betweenlongitudes75Eand 105E,Fig. 10,with initial conditionsshownin Fig. 11.
Figure 12showsthe resultsfor the stretchedgrid usinga sufficientlysmall timestepto
ensurestability without filtering. Thestretchedgrid solutionisverysimilarto theuniform-
grid solution,creatingnegligabledistortiondueto the stretching.Theexperimentis again
repeatedusinga largertimestepcomparableto that usedfor GCM simulationsand thus
requiringtendencyfiltering, Fig. 13. It is clear that the useof the standardFFT filter
hascreated significant distortions of the pure waveforms and has affected the solution at

all longitudes. In addition, significant small-scale features have been created even though

linear stability has been achieved. Arbitrarily increasing the strength of the filter to n = 2

creates even further distortions, Fig. 14. A snapshot of the solution at 3 hours is shown in

Fig. 15 clearly demonstrating the inability of the standard FFT filter to adequately control

noise and prevent distortions on the stretched grid.

4 Stretched Grid High-Latitude Filter

Since the standard filtering technique is done in spectral space, it is clear that the functions

upon which stability is based (the trigonometric zonal harmonics) must have the same

relevance on the stretched grid for the filtering technique to be valid. Figure 16 depicts the

single harmonic wa_enumber 3 on the uniform grid (top panel) and on the stretched grid

(center panel). Here, the term "wavenumber 3" is used to describe a field whose structure

is repeated three times in the longitudinal direction. Using this definition we see that for

each zonal harmonic k there is an associated geophysical scale whose wavelength Lk is given

by:

27ra cos ¢ (12)
Lk-- k

This physically-based wavelength is independent of any finite-resolution grid used to con-

struct the field. Assuming this physically-based wave propogates uniformly in the zonal

direction, the filter strength required to slow it down must clearly be a function of the

local zonal grid increment just as it is a function of latitude (i.e., the required strength to

restrict transport to no more than 1 AI per timestep would need to be greater in an area

of high resolution than in an area of coarse resolution). However, as shown above for the

standard filtering technique, there is no longitudinal dependence on the filter strength Fk.

Moreover, since the FFT implicitly assumes a uniform grid distribution, the FFT interprets

this wavenumber 3 example as a field which is made up of both longer and shorter wave

components (Fig. 16, bottom panel). The varying strengths of the filter as defined by (11)
for these wavenumbers would be misapplied if the intent was to filter the geophysical scale

associated with wavenumber 3.



The top panelof Figure 17showsthe FFT harmonicdecompositionof the wavenumber3
examplefor both the uniformgrid andthestretchedgrid. Interestingly,the wavenumber3
harmonicis almostcompletelymissingfrom the stretchedgrid interpretation. Insteadwe
seeaspreadof harmonicsto eithersideof the actualinput wavenumber.Thebottom panel
of Fig. 17repeatsthis analysisfor eachwavenumberfrom 0to IM/2. Eachsingleharmonic
wavecomponentis projectedonto the strethedgrid, and thenusedasinput to the FFT
analysis.As before,eachcomponentis interpretedashavingboth longer waves and shorter

waves, with little energy in the actual wavenumber used as input.

Figure 18 examines the convolution weights obtained from the standard FFT filter but

applied on the stretched grid. The top panel, as before, shows the spectral filter function

independent of longitude. The bottom panel of Fig. 18 shows the convolution weights

plotted on the stretched grid. We see that the peak amplitude of the weights is constant

in longitude. However, in the fine-resolution region the convolution weights have narrowed

in longitude while in the coarse-resolution region they have broadened. This implies that

the effect of the standard filtering technique on the stretched grid will be to filter less in

the fine-resolution region and filter more in the coarse-resolution region, exactly opposite to
that required from previous considerations.

It has become clear that to accurately filter on a stretched grid, we must first determine

the stretched grid basis functions upon which the model solutions may be projected. We

again start by writing the discretized linear shallow water equations for the stretched grid:

Ot a cos ¢ _, AAi+ '

Ohi _ H ( u- l - u ' ),-r_,-_Ot - acos¢ "

Here, AAi+ ½ is the distance in longitude between mass points, and

A_,+½ + AA i
AAi = -_-

2

(13)

(14)

(15)

Using (13) and (14), the wave equation is formed given by:

02hi gH hi+l - hi hi - hi-1

Otz (a cos ¢) 2 AAiAA/+½ AAiAAi_ ½

Assuming a solution of the form:

hi(t) = ]_,ie-'t ,

(16)

(17)



wefind

-v _(a cos CA_) 2
gH

/

+ ) '
(18)

where A,1 2,_ Note that for the uniform grid (AAi AA) the weights used in (18) simply

become 1,-2, 1. Defining:

AA 2

ri = AAi+_AAi_ , (19)
5 2

AA 2

r_- AA/AAi+! ' (20)

AA 2

r_-= AAiAAi_! ' (21)
2

we may write (18) in matrix form as:

-2rl r_

r_ -2r2 r]

r 3 ". -.

''. --2FIM_I FI't'M. 1

r+ M riM --2rim

rl

fl = ,Xfi, (22)

where A is the eigenvalue associated with the eigenfrequency v:

A=- u_(ac°s_A_)2
gH

(23)

From (22) and (23), we may compute the eigenvalues (or eigenfrequencies) and correspond-

ing eigenvectors associated with the stretched grid (see Appendix for detail). Figure 19

shows the eigenvalues computed by solving (22) for both the uniform grid and the stretched

grid, in addition to the analytic uniform grid solution associated with (7). Here we have

ordered the eigenvalues by magnitude. For the uniform grid, the analytic and numerical

solutions are indistinguishable. For the stretched grid, we see a significant increase in the

magnitude of the eigenvalues associated with the highest mode index (smallest scales).

7
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The eigenvectors associated with a sampling of modes are shown in Fig. 20 for the uniform

grid and Fig. 21 for the stretched grid. The uniform grid solutions are simply discretized

sines and cosines, analogous to the analytic solution. The eigenvectors for the stretched grid

are similar for the low-index (slow) modes. However, as the mode index (or eigenfrequency)

increases the structure of the eigenvector is confined to smaller and smaller regions. For the

highest eigenfrequency, the eigenvector is totally concentrated in the finest resolution area.

By ordering the eigenvalues and associated eigenvectors in this manner, a filter may be

constructed to selectively damp those modes whose associated eigenfrequencies are faster

than some critical value. Using (23) we see that

v=4- IAI½gv_/ (24)
a cos CAA

As in the uniform grid case, the maximum frequency allowed will be defined as the unfiltered

frequency associated with the shortest wave at tile critical latitude ¢_:

= 2gv (25)
a cos ¢cAAmi n

Requiring that the filtered frequency be no faster than the maximum frequency allowed,

F v < VMaX , (26)

the filter function for the stretched grid becomes:

[ co ¢]f = mill 1, [Al½AAmi n cos¢_j
(27)

4.1 Convolution Filter

To construct the stretched grid convolution filter, consider for example the height field

defined by a vector array h constructed from the set of modes found in Section 4:

h = MA, (28)

where M are the stretched grid modes or eigenvectors and A are the mode projection

amplitudes. The amplitudes may be explicitly obtained by

A = M :i h. (29)

A new set of amplitudes are now created by multiplying (29) by a diagonal matrix F defined

by the convolution filter function (27):

A F=FA=FM -I h. (30)



The reconstructedfilteredfield, hF, is thereforegivenby:

hr =_ M A r = M F M -1 h . (31)

Weights in Grid Space

Tile weights obtained in grid space are analogous to the weights obtained through convolu-

tion of tile standard FFT for the uniform grid. Through convolution we may now examine

in spectral space the response of these weights as a function of longitude. The top panel

of Fig. 22 shows the spectral response of the stretched grid convolution filter for various

longitude locations, while the bottom panel shows the grid space weighting coefficients. We

see that the amplitude of the coefficients is now a function of longitude while the breadth of

tile stencil is constant. This is exactly opposite to that obtained by the use of the standard

FFT filter applied to the stretched grid, with the impact being that the strongest, filtering

now takes place in the region of highest resolution. The results from using the stretched grid

convolution filter are shown in Fig. 23. The stretched grid convolution filler successfully

prevents linear instability with no distortion of the waveforms nor generation of additional
small scale features.

4.2 GEOS GCM Results

tlaving seen the effectiveness of using the stretched grid convolution filter in simple off-line,
gravity wave test cases, we now proceed to analyze its performance within the GEOS GCM.

For this test, the forecast experiment described in Section 2 is repeated by replacing the

standard FFT polar filtering technique with that of the stretched grid convolution filter.

Figure 24 once again shows tile initial zonal mean temperature distribution and the day

5 temperature change, as well as the 0.2 mb day 5 temperature change and zonal wind

fields. Compared with Fig. 3, the stratospheric warming event is again simulated but with

no evidence of small-scale noise near the polar, high-resolution region. It should be noted

that tile noise generated with the standard filtering technique was primarily evident at

high stratospheric altitudes where the wind field is particularly strong. At lower levels the

standard filter and the stretched grid convolution filter produce very similar results. Figure

25 shows the sea-level pressure and 300-mb height fields at day 5 for the two simulations.
The two solutions are virtually identical with no evidence of noise in either case.

4.3 Uniform Grid Interpretation

While the preceeding sections derived exactly the proper filter function for the linearized

shallow water equations on a stretched grid, it is possible to approximate this solution

through a uniform grid interpretation. Recall from Section 3 that the filter function derived

9



for the uniformgrid for n = 1 was given by

[ (cos Fk =min 1, \cos¢_
(32)

for k=0, ]-_-. This may be rewritten as:

[ /iac°_seA)_iF/,k, = min 1, \a cos ¢cA$mi n
(33)

for

k' = 0,--Ni (34)
2 '

Ni -- 2rr (35)
A,_i

2_ (32) and (33) are identical. However, for theWe see that for the uniform grid, A,ki = i-if,

stretched grid we define Ni at each longitude location as the number of points a uniform

grid would have assuming a uniform resolution of AAi. This will produce a uniform grid
filter function which, through convolution, may be represented by the grid-space weight-

ing coefficients. The stretched grid weighting stencil may then be constructed by simply

interpolating the uniform grid stencil to the stretched grid locations.

The top panel of Fig. 26 shows the grid-space weighting coefficients obtained using this

empirical method, while the bottom panel shows the differences compared with the eigen-

value method. The empirical method produces coefficients very similar to the eigenvalue

method, with the resulting simulation shown in Fig. 27. This implies that the stretched

grid convolution filter developed in Section 4.1 acts to treat each local A)_i as if it were

global, and constructs a filter function based on a uniform grid of that resolution. Interest-

ingly the minor differences which are obtained using this empirical method are ultimately

pathological giving rise to instabilities as shown in Fig. 28 after 30 hours of simulation.

However, as will be seen in the next section, this technique can be useful to analyze the

impact of arbitrary uniform grid filter response functions applied to a stretched grid.

5 Global Shapiro Filter

As previously noted, the uniform grid GEOS GCM also employs the Shapiro (1970) filter

to globally damp small-scale dispersive waves. This filter also prevents computational non-

linear instability (Phillips, 1959) to occur. The Shapiro filter is applied as a tendency to

the winds, potential temperature, and tracers (including specific humidity). Thus, only a

fraction of the full Shapiro filter is incorporated at each time step. This is done to reduce

dynamical imbalances and diabatic responses caused by the filter.

10



TheShapirofilter tendencyfor a quantityq is defined by

Oq) qF _ q
_- SF T '

(36)

Here q and qF are the unfiltered and filtered quantities, and T is an adjustable timescale. For

the uniform grid GEOS GCM, r is set to 1.5 hours which effectively removes the smallest

two-grid interval wave in approximately 6 hours. The filter is applied separately in the
longitudinal and latitudinal direction using

where

F [1 2 nq ,j = - (r;) ] [1- qi,j (37)

1
F (qi,j) -  (qi+l,j - + qi_l,j),

1
F_(qi,j) - _(qi,j+l - 2qi,j + qi,j-1) ,

(38)

and n is the Shapiro filter order/2. At 2.5°x2 ° resolution the GEOS GCM uses an 8th-order

(n=4) filter. Lower-order filtering corresponds to stronger damping.

We may examine the Shapiro filter response function in one dimension by assuming a wave
solution defined by

qi = qk e_kiA'\ • (39)

Doing so we find

= 1 - sin2_(k_) . (40)

The left-hand column of Fig. 29 shows the frequency response for the 8th-order filter on a

2.5 ° uniform resolution grid as well as the grid space weights at selected longitudes obtained

through convolution. We see that the grid space averaging is very local (only 9 grid points)
and produces a sharp delineation between the small scales which are heavily filtered and

the longest scales which are virtually untouched. The center column of Fig. 29 shows the

response of the standard technique described above but applied to the stretched grid. In
this case the basic local stencil is simply used without concern for the non-uniform mesh.

Due to the success of the uniform grid interpretation in approximating the convolution

weights obtained by the eigenvalue method for the stretched grid high-latitude filter, it is

useful to employ this technique to estimate the proper stretched grid convolution weights

derived from the uniform grid Shapiro filter frequency response. The right-hand panel of

Fig. 29 shows the results from assuming that each local A,ki was globally uniform. The

convolution weights associated with the Shapiro filter response for each implied uniform

resolution were then interpolated to the actual stretched grid locations. The frequency

response associated with these empirically derived coefficients was then plotted for selected

11



longitudelocations.Dueto theverylocalnatureoftheShapirofilter andthefilter response's
non-dependencyon critical wavelengths,very little impact is seenas a result of the non-
uniformgrid. This issignificantlydifferentthan theimpactseenfor thehigh-latitudefilter
case,Fig. 22,wherelongitudinallocalitygreatlyinfluencedfilter strength.Asaresultof this
analysisin additionto empiricalevidencefrom numerousstretchedgrid GCM simulations
and the greaterefficiencyof the standardalgorithm,no obviousadvantageis realizedby
usingthe (empirical)eigenvaluemethodfor theglobalShapirofilter.

4
-1

6 Conclusion

In this report the filtering characteristics of a stretched grid GCM have been reviewed. It

was shown that using the sta_ndard FFT polar filtering technique, as performed by Fox-

Rabinovitz et el. (1997) for the stretched grid Held-Suarez dynamics benchmark, com-

putational small-scale noise is generated near the poles in tile region of high longitudinal
resolution. While this noise is associated with high wind speeds ill the stratospheric do-

main, Fox-Rabinovitz et el. found similar problems when total stretching factors were large

(> 16). For those cases, ad hoc strengthening of the filter coefficients were used to control

stability.

A review of the standard high-latitude filtering procedure was made and an examination of

the physical scales associated with the filter were analyzed on both the uniform grid and

the stretched grid. It was shown that the implicit assumption of a uniform grid within

the FFT algorithm results in a misrepresentation of the zonal harmonic composition of the

input field. Standard filter strengths which are derived from uniform grid considerations

and stability analyses are thus misapplied to the stretched grid harmonic decomposition,

resulting in weaker filtering within the high resolution region and stronger filtering in the

coarse resolution region. This is opposite to the requirement of stronger filtering in areas

of high resolution.

A new filtering technique has been developed which accurately accounts for the non-uniform

grid by computing the eigenvectors and eigenfrequencies associated with the stretching. |t
is shown that the convolution of the required damping function within mode space yields

grid-spaced weights which can be efficiently used to perform the filtering without distortion.

Offline tests showed that the stretched grid convolution filter correctly filtered more in the

high resolution region and less in the coarse resolution region. Online GCM experiments
further showed that computational small-scale noise was no longer generated in the region of

highest longitudinal resolution near tile poles. Away from high latitudes, no adverse effects

from using the stretched grid convolution filter were seen. In the limit that the stretched

grid becomes uniform, this technique reduces to the standard uniform grid filter.

In addition to the complete eigenvalue/eigenvector solution, an empirical method was de-

i
12



velopedwhichtreatseachlocal A)_i as if it were global. The convolution weights associated

with the filter frequency response for the implied uniform resolution are then interpolated

to the actual stretched grid locations. This empirical estimation of the convolution weights

for a stretched grid was used to analyze the impact of applying the Shapiro filter on the

stretched grid. It was shown that due to the Shapiro filter's very local grid stencil (9 points

for the 8th-order filter), the standard application of the Shaprio filter produced very small

differences compared with the (empirical) eigenvector method. Due to the greater effi-

ciency of the standard algorithm, no obvious advantage is realized by using the (empirical)

eigenvector method for global filtering.
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Appendix

Linear Algebra Aspects
of the Stretched Grid Convolution Filter

The stretched grid convolution filter requires the eigenvalues and eigenvectors of a non-

symmetric matrix (which we define here as R) from (22). The matrix R is a tridiagonal
matrix with the addition of the two corner elements h+M and r 1. It has several interesting

properties. From (19), (20), and (21) it is clear that all row sums are zero. That is,

Vi : -2ri + r_ + r[ = O, or in matrix form,

Rc = 0 (41)

where c is a vector of constant elements c = (c, c,..., ¢)T. In other words R is singular.

From the same definitions (19), (20), and (21) it is easily shown the product of the ratios

is unity:
r i

1-I ri+ = 1 (42)
i=1 ri

since every AAi, AAi+½ and AAi_ ½ appears in both the numerator and the denominator.

If (19), (20), and (21) are all multiplied through by AA_, or equivalently, (22) is multiplied

on the left by

A __

AA2

AA_M

(43)

a generalized eigenvalue problem containing a symmetric left-hand side It = AR side can
be obtained:

I_h = ,kAle. (44)

It would therefore be straightforward to use a generalized eigen-solver for symmetric ma-

trices to solve the eigenvalue problem. But the problem can be further simplified. Since

14



both1_andA arerealand symmetric,it isclearthat all A are real. This means that R is

symmetrizable, that is, a similarity transform can be applied to R to create a symmetric

matrix with the same eigenvalues:

ZRZ-I=s=s T " (45)

In order to find Z by construction, consider the diagonal matrix

Z

(_IM

(46)

Clearly, Z -1 is also a diagonal matrix with _ on the diagonal. 1 If the similarity transform

is applied using this Z, the result is a matrix with the same structure as R:

S=ZRZ-I=

_2rl _rl + _M15 _,,-

_r_- -2r2 _r+_32

r_" "". "'.

• 8IM--1 _4
"" --2rIM--i _'IM--1

515M--_--r_ --2riM51Mr+
_1 IM

(47)

This matrix is symmetric if, and only if, the elements r+ and r_- are non-zero, and the

following conditions are satisfied:

_i+12 w r_.._/+6i2 , (48)

ri+l

r +
The conditions (48) wrap around (i.e., 512 = :-u2t_5IM) and can only be satisfied if

r I

r 1 r 2 •.. riM

-- 1. (49)

From (42) we already know this to be the case for the matrix R. One degree of freedom is left

to set, for example, 51 = 1. Thus, with a simple similarity transform, a symmetric matrix

lit is assumed that the _, are non-zero.

15



canbeobtainedwhichis moreefficientto factorize2 than the original R. It also improves

the algorithm by indicating that the eigenvalues are necessarily real -- a non-symmetric

eigensolver might return very small imaginary components due to round-off errors. Finally,

the eigen-decomposition of a symmetric matrix yields orthogonal eigenveetors Q,

!

!

|

i

!
|

l

i
|

QT S Q = diag(Al,;_2,...,A_M) (50)

which can be a considerable advantage.

Equation (41) indicates that R has a zero eigenvalue, i.e., At = 0. Although most eigen-

solvers can handle such a case, it is conceivable that floating point errors can result. In

order to further stabilize the algorithm, it may be worthwhile to remove the zero eigenvalue

by the following technique. The eigenvector to the zero eigenvalue of R is clearly c, a vector

of constants, as shown in (41). The equation

Rc=Z -1 S Zc=0 (51)

indicates that y = Zc is the eigenvector of S corresponding to its zero eigenvalue. Assuming

a normalized y it is possible to create an orthonormal basis,

where Y can be constructed iteratively from Gram-Schmidt orthogonalization.

second similarity transformation can be applied on S using Y:

Thus a

yT S Y = ,_, [S] [y Y] (53)

[ yTSy YTS_r I (54)= ,yTSy "_-TS _r

[00 ]= 0 s (,55)

Note, for example, that yTSY = yTsT'_[ = (Sy)T_ r = 0 T. This similarity transform en-

sures that S is also symmetric and contains all the eigenvalues of S except the zero eigenvalue

corresponding to eigenvector y. The symmetric matrix S has the eigen-decomposition,

2For example, with the LAPACK routine dsyev.

w
I

i
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QT s c) = aiag(_=,..._,M) • (.50)

From (53) and _(56)_it is straightforward to show that, the eigenvectors of the non-zero 3

eigenvalues are YQ. Thus the full set of eigenvectors of S is:

It is now possible to specify the eigen-decomposition of R in terms of all the components
of tile fully stabilized eigen-solver:

M-1RM = diag(0,)_2,...AxM)

= QTSQ

= [ yT

] Z-'RZ[L Y (6o)

Thus, with the eigenvectors Q of S;, the normalized eigenvector y, the set of constructed

orthonormal vectors Y, and the diagonal matrix Z, it is possible to recreate the eigenvectors
M of R:

M=Z[ y _rQ ] (61)

which are required in the stretched grid convolution filter.

3The proof is omitted here that, all other eigenvalues of S are non-zero.
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the stretched grid.
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Figure 7: Timeseries of single harmonics on a uniform grid using a linearly stable timestep

_nd no filtering.
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Figure 11: Initial conditions for graxity-wave experiment, on a stretched grid.
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Figure 12: Timeseries of single harmonics on a stretched grid using a linearly stable t imestep

and no filtering.
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Figure 14: Timeseries of single harmonics on a stretched grid using the FFT filter squared.
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Figure 23: Timeseries of single harmonics on a stretched grid using an unstable timestep

with convoiut:ion filtering.
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